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We prove a sufficient condition for the termination of pursuit in nonlinear games,
We indicate a class of games on a plane,for which this condition is satisfied, we
introduce the notion of relative optimality, and we consider an example,

1, Let the motion of a vector z in an n-dimensional Euclidean space /!, be des-
cribed by the vector differential equation

i=]{u 0, uwue=l, ve=( (1.1)

Here the function f (z, u, v) is defined and is continuous for all z, u, z; I’ and
are arbitrary compact subsets of the p- and ¢-dimensional Euclidean spaces R,, and

R, ,respectively, The control parameter u corresponds to the pursuing (chasing) object
and » to the pursued (escaping) object, Further, a certain terminal set M is specified
in /2 . The game consists of the following: the pursuing object tries to lead out the
point z onto M, while the pursued object, generally speaking, hinders this, The game
is considered terminated when point z falls onto Af. All this describes a differential
pursuit game (cf, [1]).

Let the game start from a point z, & M at t = 0. We say that the pursuit from
point Z, can be terminated in a finite time if there exists a number £ (z,) > O such
that under an arbitrary measurable variation v {f) of parameter v we can select a mea-
surable variation u (f} of parameter u such that the solution z (¢} of the equation

2 o=f(z, u(t), o), z0) =3 (1.2)

falls onto A in a time not exceeding the number ¢ (z,); here, for finding the value

n (t) of parameter u at each instant ¢ 7> 0 we use only the current information: the
values z {(t) and v ({) of vector z and of parameter v at this same instant {, In what
follows we need a generalization of Filippov's lemma [2, 3], We present it in the nec=-
essary form,

Filippov's lemma, If ¢ (¢, 1) is a continuous n~vector-valued function of
the arguments ¢ < (o, B}, u = (u,, g, . . ., u,) &= II, 11 is a compactum in an
r-dimensional Euclidean space, y ({) is a measurable n~vector-valued function defined
on the interval la, Bl and ¢ (f, II) = y (#), then there exists a measurable function
w (), o< t< P, forwhich @ (¢, u (2)) = y (¢) for almost all ¢ = [, Bl. i.e,
the equation ¢ (¢, u) == i (f) has a measurable solution,

Let us state a generalization of this lemma,

Lemma 1., If ¥ (¢, u, v} isa continuous n-vector-valued function of the argu-
ments ¢ & [a, Bl, n e I1,. v & I, 11, and II, are compacta in s- and 7-dimen-
sional Euclidean spaces, respectively, v, (f), y (f) are measurable functions defined on
[, B] and ¢ (¢, II;, v, (1)) = y (t), then the equation P (¢, u, v, (t)) = y (t)

26
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has a measurable solution,

Proof, Foreach t&la, Bl,by n, (# we denote the solution, smallest in the lexi-
cographic sence, of the equation « (1, u, », (¢)) = y (t) [2, 3]. By Luzin's theorem, for
any & >0 we can find a compact set 0 C [a, B}, p — @ — mes o < &, on which the
functions #, (#), y (¢ are continuous, By arguing just the same way as in [2, 3], we can
show the measurability of «, (t) on . Because the number & is arbitrary, the function
ug () is also measurable on [a, B].

Theorem 1, Let the game be started from a point z, & M at ¢ = (, If there
exists an absolutely continuous function § (¢), 0 <C ¢ < T (z,), for which: (1) §(0)=
2, E@)EM, 1y =T (5), @) & @) fEW®, P, o) forany v Q for
almost every ¢ &= [0, 1,1, then we can terminate the pursuit in time T (z,) .

Proof, 1°, From Condition (2) of the theorem it follows that £ (¢} & £ (& (2),
P, @) for almost every ¢ = [0, 1,]. We denote the Cartesian direct product P X Q
by II and the function f (g (), u, v) by @ (¢, w) ,where w = (u, v}). Obviously,
the function ¢ (¢, w) is continuous in ¢, w and the set II is compactin R, X R,.
Consequently, all the conditions of Filippov's lemma are satisfied, Therefore, there ex-
ists a measurable function w, (¢), defined on the interval [0, T,], for which

@ (& wy () =& (1)

Obviously, the components u, (£}, », (£} of the measurable function w, () also are
measurable and f (E (), u, (2), v, (£)) = &' (f) for almost all ¢ & [0, t,]. Hence,
the function § () is a solution of Eq, (1.1) (with u = u, (£), v = v, (¢)).

2°, Nowlet v = »; (), 0 <t < 71y, be an arbitrary measurable function with
values from (), We denote the function f (§ (£), u, ») by ¥ (¢, u, v). The func-
tion (£, u, v) is defined for all ¢ = [0, 1,], u &= P, v & Q, is continuous in £,
u,v,and ¥ (¢ P, v, (t)) &= & (¢) by virtue of Condition (2) of the theorem, Hence,
all the hypotheses of Lemma 1 are satisfied, Therefore, there exists a measurable func~
tion u, (#), 0 < t < 1, for which

FE@, uy (8), oy () = (8, uy (2), 05 (1) = § (D) 1.3
for almost every £ From (1, 3) we see that the absolutely continuous function § (¢) is
a solution of Eq, (1,1) (with u = u, (), v = v, (8)).

3°, Suppose that the pursued object chose an arbitrary measurable control v=2(¢)
whose value at every instant ¢ >» 0 becomes known to the pursuer, Then, from the
value v (¢} he chooses the value u (f) of his own control parameter y at this same in-

stant £ so that FEW®, e@,v @) =8 @

Obviously, the solution z (f) of Eq, (1,1), corresponding to the controls z (¢), v (¢), co-
incides with & (¢): z (¢) == § (¢) (see Sect,2), Therefore, z (0) == z, and § (1,) =
z {ty) & M. The theorem is proved,

2. Let us consider nonlinear games on a plane, We indicate conditions under which
the game can be completed from the points of a certain region, Further, we prove the
optimality of the pursuit time relative to the region (see below for the definition),

Let the motion of vector 2z be described by the system

zy = 2z, zy = g (3, u, V) (2.1)
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Here u, v are scalar control parameters whose range of variation is P = Q = [—1,
1]. The terminal set M == {0}. Conceming the function g (z, u, v) we assume that
it is continuous in all arguments for all z and for u & P, v € @, is continuously dif-
ferentiable in z;, z, for ¥ == v = 1, u = v = —1 and for all z. We assume further
the fulfillment of the following conditions:

1) No trajectory whatsoever of system (2, 1) can go to infinity or come out from
infinity within a finite time interval,

2y Let f,=F @ =g@G11,7 =7 =g —1, —1). Forallz and
for i == 1,2,

of, 1 [ 8, \?
a) i —_—t
6;1 < - T ( 0zg )
F%. N\ 8. 8. [ 9%, *f 1
by ( i ) i /s (— 1)2[ ‘ J%O

621,622 TN gmd gze?! 8z dzgt

3) f1(@) >/ (2) forall z.

4 [0 >02>7(0)

5) For each fixed v the function g (z, u, v) reaches its maximum for u == 1
and minimum for w = —1. Furthermore, g.(z, 1, ) > g (z, 1, 1), g (2, —1, ) <
g (z, —1, —1).

Let us consider a controlled object described by the system

2y == gy g T f (Z, w) (2.2)
F o w) = [(1 + wfy () + (1 — w)f, (2)]

Here the control parameter w can take values from the segment W = [—1, 1]. For
system (2, 2) we consider the time-optimal problem of hitting on the origin of the plane
R,. All the hypotheses of Theorem 3, 32 of [4] are satisfied, In fact, by virtue of assump-
tion (5) the set ¢ (z, P, Q) [ (s, W), 1. e, any trajectory of system (2, 2) serves simulta-
neously as a trajectory of system (2,1) ; therefore, Condition A of Theorem 3, 32 is satis-
fied, Since f(z, 1) = f; (2). f {z, —1} = [, (3), Conditions C, D also are satisfied (see2)),
Further, af/gw = }, — f, > 0 according to(3)and f(0, 1) == f, (0) >0, f (0, —1) =

f2 (0) < 0, according to (4) ; hence conditions (3, 73), (3. 74) of [4] also are satisfied,
Consequently, when Conditions (1) —(5) are satisfied, a region G ((C R,) exists for the
controlled object (2, 2), from any point of which a motion to the origin is possible, which
is optimal in region & . The synmthesis of controls optimal in region G can be effected
in the following manner, The switching line A consists of arcs ¢,~, 0,%, n = 1, 2,
..., while the synthesizing function w (z) equals 1 below line A and on arc o;"
and equals —1 above line A and on arc 0",

Theorem 2, Let z, be an arbitrary point of region , T (z,) be the time in
which the phase point goes from z, to the origin along an optimal trajectory of system
(2.2), Then pursuit from point z, can be completed in time T (z,) .

Proof, By z, (f) we denote the optimal trajectory of system (2. 2), connecting point
Z, and the origin, System (2.2) is autonomous ; therefore, we can take it that z, (0) =
z, Then z, (I (z,)) = 0. Let us convince ourselves that the trajectory z, (£), 0 <C
t < T (z,) sarisfies the hypotheses of Theorem 1, Obviously, Condition (1) is satisfied.
Since zgy (1) = zgg (1), Zoo (1) = [ (3, (1), w, (1)), where w, 0,0t T (20)
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is the optimal control leading the phase point from z, to the origin along trajectory
Zy (£). to verify Condition (2) it is sufficient to show that f(z, (8), W, (£)) CC g (24 (8),
P, () for any v and for almost every £. We have

f(zo (t)’ We (t)) < [g (zo (t)v _"11 _1)v g (ZO (t)’ 1’ 1)]
On the other hand

g (z (1), P, Q) = {g (2o (t)v —1, v, g (2o (1), 1, 2))1 e
[g (ZO (t)’ _19 _1)7 g (ZO (t)» 1* 1)}

Hence f (z, (t), wo(2)) C g (2 (2), £, v) forany » and for almost every £ Con~-
sequently, by virtue of Theorem 1 the pursuit from z, can be terminated,

The theorem from [4] cited above establishes the optimality of the trajectories only
in region G, i, e, they are optimal in comparison only with trajectories wholly located
in . Therefore, in the differential game described by system (2, 1) we can consider
the optimality of the pursuit time relative to region (. We introduce the precise defi-
nition,

Definition., Let ) be some subset of R,, containing point z,. The number ¢ (z,)
is called the optimal pursuit time relative to [ if: (1) the pursuit from point 2, can
be completediniime £ {z,), (2) there exists a measurable control »(f), O<t< ¢ (z,),
such that for any measurable control u {t), 0 < t <C 1 (3,), the solution z (¢), § <
t <_t (%) of system (2.1), corresponding to the controls u (t), ¢ (f) and emerging
from 2z, at t = 0, satisfies the conditions z (f}) &= D for all t = [0, £ (z,)] and
z () 5= 0 forany ¢t < [0, ¢ (3,)). Obviously,if D = R, then optimality as intro-
duced above coincides with optimality in Pontriagin’s sense [1].

Theorem 3, If Conditions(1)—(5) are satisfied, then the time 7 (z,) is optimal
relative to & for any point z, = .

Propof. The possibility of completing the pursuit from an arbitrary point z, & G
in time T (2,) was established in Theorem 2. It remains to prove the validity of the
second part of the definition, Assume that the pursued object applies the control
v () = w, (t), 0 < ¢t < T (z,), while the pursuing object applies an arbitrary con-
ol u (1), 0 <C £ < T (3,). The trajectory z (¢), 0 < t < T (z,), corresponding
to u {f), v () connects the points z,, z (I (2z,)) and is located wholly in G (see the
definition), To be specific let z, be above A, for O <{ t <C t; let the trajectory z (¢)
liein a two-dimensional cell X, let it be a part of a one-dimensional v of second
kind for ¢, < { < f; ,letit be a part of a two-dimensional cell 3, for f, <t <<y,
etc, [4], and, finally, for £ < t < T << T (z,) 1et it hit into the ongm on a cell of
first kind,

As is known [4], the function o (2) = — T (z), z & G, called the Bellman function,
is continuously differentiable in the region G \ A and satisfies in it the Bellman equa~-
tion

max [‘3‘3‘2) -+ 28, )j (2.9)
wEW £1
z a .
‘2%“:.(1sz u)()f( 1) =1, if z isabove A

The function z (f), 0 < ¢ <C ¢,, is absolutely continuous, while the function ® (z) is
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smooth in the region G \_ A\, Therefore [5], their superposition o (z (£)), 0<Ct<< &
is absolutely continuous, Hence, for almost all t [0, ¢,| the derivative dw (z(t))/at
exists and can be computed by the formula

ol _ WO, ) 4 220 (1), u@), —1) 2.9)

Now let ¢ > be an arbitrary number, ¢ < #;. We consider (2,4) for 0t

t, — €. Since the function dw (2 (¢))/ 7, <T U [4] for ¢ = [0, ¢, — e],according

to (2. 3) we have do (z (£))/dt < 1. Hence,» (z ({;, —€)) — o (5 (0)) < t1--2 <<

{;. Hence,because ¢ is arbitrary, we obtain f; > @ (z ({;)) — ® (3,). Suppose now

that z (¢) lies in a one-dimensional cell of first kind for ¢ &= {t,, 1,]. Because of the
special form of system (2,1) this is possible if and only if

g, u®, w, @ =F@E@, 1D, g, ull) w ) =FfE@ —1)

Consequently, the phase point moves along trajectory 2z (£) at the same velocity with
which it moves for system (2,2) along A from z (1;) to z (1,). Hence, T, — Ty =
0 (2 (1)) — o (2 (1))

It is known that if z (f) is a part of a two-dimensional or one-dimensional cell of
first kind for T < £ < 5 ,then s — T > @ (2 (s)}) — @ (z {t)). But in the given
case the phase point z (¢} can move for some time on a one-dimensional cell of first
kind, It can be proved that if z (£) c= v, & < ¢ < fy, thenf, — 8 > 0 (2 (&) —
@ (z (#)). To do this it suffices to prove the Vahdxty of the Bellman equation on v, i, e,
it is sufficient that [6]: (a) the optimal trajectories of system (2, 2) should not only ap~
proach (this follows from Conditions (1) —(5)) but also depart from cell v at a nonzero
angle, (b)the level liney of function  (2) at points v do not touch cell V.

Let us first prove the validity of condition (a), The optimal trajectories of system
(2.2), moving on cell ¥, approach a certain one-dimensional cell v, at a nonzero angle
[4]. Let z be an arbitrary point of cell v, and 2° (1) be an optimal trajectory of system
(2.2) passing through it, Let ¢ (A), | A | <Ce be the equation of cell v, in the neigh-
borhood of point z° and let ¢ (0) == :°. By 2= (1) we denote an optimal trajectory of
system (2, 2) passing through point ¢ (A}, Because system (2,2) is autonomous, we can
take z2 (0) = ¢ (A), | A| < &. The trajectory 3> (1) intersects cell v at some ¢ == O (A},
0 (A) < 0. As was proved in [4], the function ¢ (A) depends smoothly on the parameter
A. By virtue of the smoothness of cell v,, the function ¢ (A), | A | <& is also smooth,
We have ¢’ (A) = ¢ (0) - ¢’ (0v A = o(A) (here and further on ¢ {A) denotes an infini-
tesimal of order higher than the first relative to A). But z& (0) == @ (&), =" (0 =
@ {0y = 2°. Consequently [4], 2 (0 (A —= 22 (1 {4)) - 8z (0 (A) A 1 o (4). Here dz (1)
denotes the solution of the variational system

821 = Bza, Oz = Of (22 (D, wo (1) 5, 1 9f (z° (1), wo (1) g, (2. 5)
dz1 Oz3
with initial condition &z (0) == ¢'(0). Since it is obvious that 8 (A) = 0 (0} - 8" (0) A +
o (A),then

dw (z

22 (8 (A)) = 22 (0 (00 + [5 (0 (0) 8 (0) + 82 (B (O] A+ 0 (A) (2.6)
The point 2z (0 (A)) belongs to cell v for all | A | <&, Therefore, by virtue of (2, 6)
p 8

the vector z (e (0)) -~ 2 (0 (0)) 0’ (0) (2. 7)
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is tangent to cell v at the point :° (8 (0)). We now prove that vector (2, 7) is not col-
linear with vector z° (8, (0)}, i, e, the trajectory z° {t) departs from cell v at a nonzero
angle, Assume that 8z (8 (0)) + 2™ (8 (0)) 8’ (0) =Az">(6 (0)), A == 0.It canbe checked that
the function 2 (¢), 0 (0) << £ < 0 is a solution of system (2, 5), Consequently, the func-
tion

8z () +z°(0 0 (0), 8()<tKO

also is a solution of system (2, 5), By virtue of the uniqueness theorem

8z () + 2 () (Y= Az (1) (2, 8)
When ¢t = 0 , from (2. 7) we have
8z (0) 4- = (0) B (0) -= A= (0) (2.9

But equality (2, 9) is possible if and only if the vector =° (0}, i, e, the tangent vector to
trajectory z° (f} at the instant ¢ == 0, is collinear with the vector ¢ (0}, i, e, the tan-
gent vector to cell v; at point :°, We have arrived at a contradiction because, as was
noted above, the trajectory z° (1) approaches v, at a nonzero angle, Thus, the trajectory
z° (¢) departs from v, at a nonzero angle, Condition (a) is proved,

We proceed to the proof of the condition (b), By ¥ (f) we denote a solution of the
adjoint system (4), corresponding to the optimal trajectory 2" () and to the control u(2).
We assume that :° (1)) € 2,, 0 <t <1 . and 2° () € T, 1 < ¢t < 1,. As is known [4],
the vector ¥ (1) = Ay grad o (z" ()}, X, >0, for t €10, 1), and the vector (1) =
hpgrad @ (2° (), Ao>>0, for ¢ & (1, T,),1.e, at points of trajectory z° (1), lying in 3,
Z,. the vector ¢ (#) is directed orthogonally to the level line, By virtue of condition(a)the
level ine of w (z)=w(z" (1)) issmooth at point ” {1y} [6], Now, from continuity considera-
tions we conclude that ¢ (t,) = A; grad e {z” {1})). But {4] the second component of vec-
tor ¥ (t;) equals zero, Therefore, the tangent vector to the level line of & (z) = o (z°
(1)) at point z° (t;) is directed parallely to the :,~-axis, In [4] it was proved that cell v
does not have vertical tangents, Hence, the level line of » (z) =  (:° (1})) does not
touch v at point z° (1;). Since 2" {1;) ranges over the whole cell v, condition (b) is proved,
Wehave p — (T — 1) 4 (e — fi) + o (=~ 1) A (= 0)

lo (1) — o cEN + lo @) —o @)+ ..
+ o (@ (%) — o G (N + lo G () — o @O)] +. ..
= —0(z(0) = T (z)
We have arrived at a contradiction because I <Z T (z,) by assumption, The theorem
is proved,

3, Example, Letthe game be described by the system [4]

7'y == 2y, 2, = —a — 20z, 4 pu — ov (3.1)

Here p is a positive and «?, 0, o are nonnegative numbers, p > ¢, 8® < «*, the sets
P=0=I[-—1,11. M = {0}. Conditions (1)~ (5) are easily verified for (3,1), Asis
known [4], the region ¢ coincides with the whole plane of variables sz,, z,. Hence, opti-
mality relative to & for (3,1) turns into optimality in Pontriagin's sense,

Note, Example (3,1) relates to the class of linear one~type objects [7], By using the
extremal sighting method we can establish the possibility of completing the pursuit from
any point when the pursuer has less information available (at each instant ¢ > 0 he knows
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only the value z (1) of the phase variable z}. As a rule this situation is common in linear
differential games [8, 9].
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We consider the behavior of a closed-loop stationary controlled system when the
forcing functions belong to a certain class of functions (the Bulgakov problem[1,
21). We derive estimates for the modulus of the maximum value of the output and
for the largest accumulation of system errors,

1, Consider the system of equations

o™ A ey ™Y A ey Yy = ke (0) (1,1)
yr 0y =...=y0)=0
ex (1) = 2 () — u (8

Equations (1, 1) describe the behavior of a closed~loop linear astatic automatic control



